upm  1.7.1
Sensor/Actuator repository for libmraa (v2.0.0)
Public Member Functions | Protected Attributes

API for the BMA250E 10 bit Triaxial Accelerometer. More...

Detailed Description

The BMA250E is a triaxial, low-g acceleration sensor with digital output for consumer applications. It allows measurements of acceleration in three perpendicular axes. An evaluation circuitry (ASIC) converts the output of a micromechanical acceleration-sensing structure (MEMS) that works according to the differential capacitance principle.

Not all functionality of this chip has been implemented in this driver, however all the pieces are present to add any desired functionality. This driver supports both I2C (default) and SPI operation.

This driver attempts to support verious flavors of this chip, such as the version on the BMX050, BMI050 (chipid 0xfa) and the version on the bmc050 (chipid 0x03). Not all functionality is appropriate, or even present on all chips. Consult the relevant datasheets.

This device requires 3.3v operation.

// Instantiate an BMA250E using default I2C parameters
upm::BMA250E sensor;
// For SPI, bus 0, you would pass -1 as the address, and a valid pin
// for CS: BMA250E(0, -1, 10);
// now output data every 250 milliseconds
while (shouldRun) {
float x, y, z;
sensor.update();
sensor.getAccelerometer(&x, &y, &z);
cout << "Accelerometer x: " << x << " y: " << y << " z: " << z << " g" << endl;
// we show both C and F for temperature
cout << "Compensation Temperature: " << sensor.getTemperature() << " C / "
<< sensor.getTemperature(true) << " F" << endl;
cout << endl;
upm_delay_us(250000);
}

Public Member Functions

 BMA250E (int bus=BMA250E_DEFAULT_I2C_BUS, int addr=BMA250E_DEFAULT_ADDR, int cs=-1)
 
 ~BMA250E ()
 
void update ()
 
uint8_t getChipID ()
 
void getAccelerometer (float *x, float *y, float *z)
 
std::vector< float > getAccelerometer ()
 
float getTemperature (bool fahrenheit=false)
 
void init (BMA250E_POWER_MODE_T pwr=BMA250E_POWER_MODE_NORMAL, BMA250E_RANGE_T range=BMA250E_RANGE_2G, BMA250E_BW_T bw=BMA250E_BW_250)
 
void reset ()
 
void setRange (BMA250E_RANGE_T range)
 
void setBandwidth (BMA250E_BW_T bw)
 
void setPowerMode (BMA250E_POWER_MODE_T power)
 
void enableFIFO (bool useFIFO)
 
void fifoSetWatermark (int wm)
 
void fifoConfig (BMA250E_FIFO_MODE_T mode, BMA250E_FIFO_DATA_SEL_T axes)
 
void setSelfTest (bool sign, bool amp, BMA250E_SELFTTEST_AXIS_T axis)
 
uint8_t getInterruptEnable0 ()
 
void setInterruptEnable0 (uint8_t bits)
 
uint8_t getInterruptEnable1 ()
 
void setInterruptEnable1 (uint8_t bits)
 
uint8_t getInterruptEnable2 ()
 
void setInterruptEnable2 (uint8_t bits)
 
uint8_t getInterruptMap0 ()
 
void setInterruptMap0 (uint8_t bits)
 
uint8_t getInterruptMap1 ()
 
void setInterruptMap1 (uint8_t bits)
 
uint8_t getInterruptMap2 ()
 
void setInterruptMap2 (uint8_t bits)
 
uint8_t getInterruptSrc ()
 
void setInterruptSrc (uint8_t bits)
 
uint8_t getInterruptOutputControl ()
 
void setInterruptOutputControl (uint8_t bits)
 
void clearInterruptLatches ()
 
BMA250E_RST_LATCH_T getInterruptLatchBehavior ()
 
void setInterruptLatchBehavior (BMA250E_RST_LATCH_T latch)
 
uint8_t getInterruptStatus0 ()
 
uint8_t getInterruptStatus1 ()
 
uint8_t getInterruptStatus2 ()
 
uint8_t getInterruptStatus3Bits ()
 
BMA250E_ORIENT_T getInterruptStatus3Orientation ()
 
void enableRegisterShadowing (bool shadow)
 
void enableOutputFiltering (bool filter)
 
void setLowPowerMode2 ()
 
void installISR (BMA250E_INTERRUPT_PINS_T intr, int gpio, mraa::Edge level, void(*isr)(void *), void *arg)
 
void uninstallISR (BMA250E_INTERRUPT_PINS_T intr)
 
uint8_t readReg (uint8_t reg)
 
int readRegs (uint8_t reg, uint8_t *buffer, int len)
 
void writeReg (uint8_t reg, uint8_t val)
 

Protected Attributes

bma250e_context m_bma250e
 

Constructor & Destructor Documentation

BMA250E ( int  bus = BMA250E_DEFAULT_I2C_BUS,
int  addr = BMA250E_DEFAULT_ADDR,
int  cs = -1 
)

BMA250E constructor.

This device can support both I2C and SPI. For SPI, set the addr to -1, and specify a positive integer representing the Chip Select (CS) pin for the cs argument. If you are using a hardware CS pin (like edison with arduino breakout), then you can connect the proper pin to the hardware CS pin on your MCU and supply -1 for cs. The default operating mode is I2C.

Parameters
busI2C or SPI bus to use.
addrThe address for this device. -1 for SPI.
csThe gpio pin to use for the SPI Chip Select. -1 for I2C or for SPI with a hardware controlled pin.
Exceptions
std::runtime_erroron initialization failure.
~BMA250E ( )

BMA250E Destructor.

Here is the call graph for this function:

Member Function Documentation

void update ( void  )

Update the internal stored values from sensor data.

Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

Here is the caller graph for this function:

uint8_t getChipID ( )

Return the chip ID.

Returns
The chip ID.

Here is the call graph for this function:

void getAccelerometer ( float *  x,
float *  y,
float *  z 
)

Return accelerometer data in gravities. update() must have been called prior to calling this method.

Parameters
xPointer to a floating point value that will have the current x component placed into it.
yPointer to a floating point value that will have the current y component placed into it.
zPointer to a floating point value that will have the current z component placed into it.

Here is the call graph for this function:

Here is the caller graph for this function:

std::vector< float > getAccelerometer ( )

Return accelerometer data in gravities in the form of a floating point vector. update() must have been called prior to calling this method.

Returns
A floating point vector containing x, y, and z in that order.
float getTemperature ( bool  fahrenheit = false)

Return the current measured temperature. Note, this is not ambient temperature. update() must have been called prior to calling this method.

Parameters
fahrenheittrue to return data in Fahrenheit, false for Celicus. Celsius is the default.
Returns
The temperature in degrees Celsius or Fahrenheit.

Here is the call graph for this function:

void init ( BMA250E_POWER_MODE_T  pwr = BMA250E_POWER_MODE_NORMAL,
BMA250E_RANGE_T  range = BMA250E_RANGE_2G,
BMA250E_BW_T  bw = BMA250E_BW_250 
)

Initialize the device and start operation. This function is called from the constructor so will not typically need to be called by a user unless the device is reset.

Parameters
pwrOne of the BMA250E_POWER_MODE_T values. The default is BMA250E_POWER_MODE_NORMAL.
rangeOne of the BMA250E_RANGE_T values. The default is BMA250E_RANGE_2G.
bwOne of the filtering BMA250E_BW_T values. The default is BMA250E_BW_250.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

Here is the caller graph for this function:

void reset ( )

Reset the device as if during a power on reset. All configured values are lost when this happens. You should call init() afterwards, or at least perform the same initialization init() does before continuing.

Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void setRange ( BMA250E_RANGE_T  range)

Set the acceleration scaling range. This device supports 2, 4, 8, and 16g ranges.

Parameters
rangeOne of the BMA250E_RANGE_T values.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void setBandwidth ( BMA250E_BW_T  bw)

Set the output filtering bandwidth of the device.

Parameters
bwOne of the BMA250E_BW_T values.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void setPowerMode ( BMA250E_POWER_MODE_T  power)

Set the power mode of the device. Care must be taken when setting a low power or suspend mode. By default init() calls setLowPowerMode2() to ensure that if any of these modes are entered we can still talk to the device. The default low power mode is LPM1, which requires slowing down register writes, which we cannot support. setLowPowerMode2() enables LPM2 which keeps the digital interface operational in low power or suspend modes. See the datasheet for details.

So if you reset your device and don't call init() or setLowPowerMode2(), you could lose control of the device by calling this function with anything other than POWER_MODE_NORMAL. You've been warned :)

Parameters
powerOne of the BMA250E_POWER_MODE_T values.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void enableFIFO ( bool  useFIFO)

Enable update() to read from the FIFO rather than the acceleration axis registers directly. init() enables this mode by default if the chip variant supports a FIFO. An advantage to this mode that all axis data is sampled from the same timeslice. When reading directly from the acceleration output registers, it's possible for one axis to be updated while another is being read, causing a temporal anomaly that even Captain Picard can't resolve. If there is no FIFO present, this call is ignored.

Using the FIFO removes this problem.

Parameters
useFIFOTrue to enable update() to read from the FIFO. When false, update will read from the acceleration output registers directly.

Here is the call graph for this function:

void fifoSetWatermark ( int  wm)

Set the FIFO watermark. When the watermark is reached an interrupt (if enabled) will be generated. If there is no FIFO present, this call is ignored.

Parameters
wmThe FIFO watermark to use. The maximum value is 63.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void fifoConfig ( BMA250E_FIFO_MODE_T  mode,
BMA250E_FIFO_DATA_SEL_T  axes 
)

Set the FIFO configuration. init() uses the FIFO_MODE_BYPASS mode with axes set to FIFO_DATA_SEL_XYZ by default. If there is no FIFO present, this call is ignored.

Parameters
modeOne of the BMA250E_FIFO_MODE_T values.
axesOne of the BMA250E_FIFO_DATA_SEL_T values.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void setSelfTest ( bool  sign,
bool  amp,
BMA250E_SELFTTEST_AXIS_T  axis 
)

Enable, disable, and configure the built in self test on a per axis basis. See the datasheet for details.

Parameters
signTrue for a positive deflection, false for negative
ampTrue for a high deflection, false for a low deflection
axisOne of the BMA250E_SELFTTEST_AXIS_T values. Note, only one axis at a time can be tested. Accelerometer output for other axes should be ignored.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptEnable0 ( )

Return the Interrupt Enables 0 register. These registers allow you to enable various interrupt conditions. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_EN_0_BITS_T bits.

Here is the call graph for this function:

void setInterruptEnable0 ( uint8_t  bits)

Set the Interrupt Enables 0 register. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_EN_0_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptEnable1 ( )

Return the Interrupt Enables 1 register. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_EN_1_BITS_T bits.

Here is the call graph for this function:

void setInterruptEnable1 ( uint8_t  bits)

Set the Interrupt Enables 1 register. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_EN_1_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptEnable2 ( )

Return the Interrupt Enables 2 register. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_EN_2_BITS_T bits.

Here is the call graph for this function:

void setInterruptEnable2 ( uint8_t  bits)

Set the Interrupt Enables 2 register. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_EN_2_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptMap0 ( )

Return the Interrupt Map 0 register. These registers allow you to map specific interrupts to the interrupt 1 or interrupt 2 pin. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_MAP_0_BITS_T bits.

Here is the call graph for this function:

void setInterruptMap0 ( uint8_t  bits)

Set the Interrupt Map 0 register. These registers allow you to map specific interrupts to the interrupt 1 or interrupt 2 pin. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_MAP_0_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptMap1 ( )

Return the Interrupt Map 1 register. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_MAP_1_BITS_T bits.

Here is the call graph for this function:

void setInterruptMap1 ( uint8_t  bits)

Set the Interrupt Map 1 register. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_MAP_1_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptMap2 ( )

Return the Interrupt Map 2 register. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_MAP_2_BITS_T bits.

Here is the call graph for this function:

void setInterruptMap2 ( uint8_t  bits)

Set the Interrupt Map 2 register. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_MAP_2_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptSrc ( )

Return the Interrupt source register. This register allows determining where data comes from (filtered/unfiltered) for those interrupt sources where this is selectable. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_SRC_BITS_T bits.

Here is the call graph for this function:

void setInterruptSrc ( uint8_t  bits)

Set the Interrupt source register. This register allows determining where data comes from (filtered/unfiltered) for those interrupt sources where this is selectable. See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_SRC_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptOutputControl ( )

Return the Interrupt output control register. This register allows determining the electrical characteristics of the 2 interrupt pins (open-drain/push-pull and level/edge triggering). See the datasheet for details.

Returns
A bitmask of BMA250E_INT_OUT_CTRL_BITS_T bits.

Here is the call graph for this function:

void setInterruptOutputControl ( uint8_t  bits)

Set the Interrupt output control register. This register allows determining the electrical characteristics of the 2 interrupt pins (open-drain/push-pull and level/edge triggering). See the datasheet for details.

Parameters
bitsA bitmask of BMA250E_INT_OUT_CTRL_BITS_T bits.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void clearInterruptLatches ( )

Clear all latched interrupts. See the datasheet for details.

Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

BMA250E_RST_LATCH_T getInterruptLatchBehavior ( )

Return the current interrupt latching behavior. See the datasheet for details.

Returns
One of the BMA250E_RST_LATCH_T values.

Here is the call graph for this function:

void setInterruptLatchBehavior ( BMA250E_RST_LATCH_T  latch)

Set the current interrupt latching behavior. See the datasheet for details.

Parameters
latchOne of the BMA250E_RST_LATCH_T values.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

uint8_t getInterruptStatus0 ( )

Return the interrupt status 0 register. These registers indicate which interrupts have been triggered. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_STATUS_0_BITS_T bits.

Here is the call graph for this function:

uint8_t getInterruptStatus1 ( )

Return the interrupt status 1 register. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_STATUS_1_BITS_T bits.

Here is the call graph for this function:

uint8_t getInterruptStatus2 ( )

Return the interrupt status 2 register. See the datasheet for details.

Returns
A bitmask of BMA250E_INT_STATUS_2_BITS_T bits.

Here is the call graph for this function:

uint8_t getInterruptStatus3Bits ( )

Return the interrupt status 3 register bitfields. See the datasheet for details. The Orientation value is not returned by this function, see getInterruptStatus3Orientation() for that information.

Returns
A bitmask of BMA250E_INT_STATUS_3_BITS_T bits ONLY.

Here is the call graph for this function:

BMA250E_ORIENT_T getInterruptStatus3Orientation ( )

Return the interrupt status 3 register Orientation value. See the datasheet for details.

Returns
One of the BMA250E_ORIENT_T values.

Here is the call graph for this function:

void enableRegisterShadowing ( bool  shadow)

Enable shadowing of the accelerometer output registers. When enabled, a read of an axis LSB register automatically locks the MSB register of that axis until it has been read. This is usually a good thing to have enabled. init() enables this by default. If disabled, then it becomes possible for part of an axis value to change while another part is being read, causing inconsistent data.

Parameters
shadowTrue to enable axis register shadowing, false otherwise.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void enableOutputFiltering ( bool  filter)

Enable filtering of the accelerometer axis data. init() enables this by default. If disabled, then accelerometer data that is read will be raw and unfiltered (rated R). See the datasheet for details.

Parameters
filterTrue to enable filtering, false to disable.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void setLowPowerMode2 ( )

Make sure low power mode config (LPM2) is set in case we later go into the low power or suspend power modes. LPM1 mode (the default) requires drastically slowed register writes which we cannot handle.

Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void installISR ( BMA250E_INTERRUPT_PINS_T  intr,
int  gpio,
mraa::Edge  level,
void(*)(void *)  isr,
void *  arg 
)

install an interrupt handler.

Parameters
intrOne of the BMA250E_INTERRUPT_PINS_T values specifying which interrupt pin you are installing.
gpioGPIO pin to use as interrupt pin.
levelThe interrupt trigger level (one of mraa::Edge values). Make sure that you have configured the interrupt pin properly for whatever level you choose.
isrThe interrupt handler, accepting a void * argument.
argThe argument to pass the the interrupt handler.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void uninstallISR ( BMA250E_INTERRUPT_PINS_T  intr)

uninstall a previously installed interrupt handler

Parameters
intrOne of the BMA250E_INTERRUPT_PINS_T values specifying which interrupt pin you are removing.

Here is the call graph for this function:

uint8_t readReg ( uint8_t  reg)

Read a register.

Parameters
regThe register to read.
Returns
The value of the register.

Here is the call graph for this function:

int readRegs ( uint8_t  reg,
uint8_t *  buffer,
int  len 
)

Read contiguous registers into a buffer.

Parameters
bufferThe buffer to store the results.
lenThe number of registers to read.
Returns
The number of bytes read.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

void writeReg ( uint8_t  reg,
uint8_t  val 
)

Write to a register.

Parameters
regThe register to write to.
valThe value to write.
Exceptions
std::runtime_erroron failure.

Here is the call graph for this function:

Collaboration diagram for BMA250E:
Collaboration graph
[legend]

The documentation for this class was generated from the following files: